
Asynchronous Dynamic Load Balancing of Tiles�

Tung Nguyeny Michelle Mills Strouty Larry Cartery Jeanne Ferrante y

Many scienti�c computations have work-intensive kernels consisting of nested loops with a
regular stencil of data dependences. For such loop nests, tiling [3] is a well-known compiler
optimization that can help achieve e�cient parallelism. For a loop nest of depth K, tiling partitions
the K-dimensional space of iterations into regular size and shape chunks of work. These tiles are
allocated to di�erent processors, giving parallelism and locality. In this paper, we consider the simple
but common case of a doubly nested loop with a regular stencil of dependences in both dimensions.
These dependences give rise to tile dependences, which require synchronization and communication
of data between tiles. We address the speci�c case where a tile needs data computed in the tile to
its left and the tile below it to execute. Execution of tiles proceeds in a wavefront fashion: each
processor will be at least one row ahead of its neighbor to the right. Rebalancing can prevent much
larger imbalances that would otherwise introduce idle time.

Our target architecture is a distributed-memory computer such as a Cray T3E, IBM SP, or
network of workstations. Initially, each processor is allocated the same �xed number of columns
of tiles in block distribution. Each processor executes its allotted tiles a row at a time. If each
processor has the same workload and computing capacity, then this allocation should be e�cient.
However, if the workloads or compute power vary, then dynamically adjusting the allocation of
columns to achieve a better load balance is desirable. Varying processor loads can arise because of
an evolving irregular application or because of contention in a non-dedicated system.

We present the Left-Right Hando� Protocol, a dynamic load balancing algorithm which does
not require centralized control. This protocol can be described as a series of asynchronous "races"
between pairs of contiguous processors. In alternate rounds, a processor alternates between racing
against its left neighbor and its right neighbor. Each processor executes a �xed percentage of its
workload, then signals its neighbor it has reached its \checkpoint". If the neighbor receives this
signal before reaching its own checkpoint, it may decide to hand o� some of its work to the sender,
assuming it determines that this will increase the performance of the both processors. To actually
hand o� work, the processor sends a message that includes the amount of work being transferred,
and the data that the receiver will need to perform the work. A key feature of this algorithm is
that the processor reaching the checkpoint �rst can (without waiting for a reply) complete its row.
Assuming the imbalance isn't too large, the reply will be available at the row's end, and neither
processor will have any idle time. We note, however, that the protocol involves more overhead than
a static schedule, since extra rounds of commuication are involved.

There is an enormous amount of literature on dynamic load balancing [5]. Our scheme uses a
local rescheduler; this has advantage over methods using a global scheduler, such as [1], which can
require a dedicated processor and global synchronization, and may not scale well to a large number of
processors. The Left-Right Hando� Protocol is an \asynchronous deterministic iterative di�usion"
method, where the work can \di�use" over time from processors with high \concentrations" of
work to less busy neighbors [4]. Asynchronous methods have the potential to be faster than
synchronous protocols; however, the rate of convergence and the optimal communication schedule are
not theoretically known [4]. Experimental results are therefore useful in determining the practicality
of asynchronous schemes.

Our experiments used a simple SOR (Successive Over Relaxation) on the Cray T3E using 8
processors. Performance was measured in three scenarios: (1) Load is distributed equally among

�This work was supported in part by NSF REU grant CCR-9504150.
yComputer Science and Engineering Department, University of California at San Diego

1



2

processors. (2) Load is synthetically introduced by requiring the i-th processor to execute each
tile i times. (This simulates either increasingly heavy contention, or increasingly more iterations
needed, on the higher-numbered processors.) (3) Load is increased for the low number processors by
requiring processor i to execute each tile 9� i times. In each scenario, our protocol was compared
against the non-load balancing version of the application. The results are given in the table below.

No Load Increasing Load Decreasing Load
Tile Size Static Dynamic Static Dynamic Static Dynamic
5�5 0.53 sec 0.87 4.31 3.51 4.03 3.27
10�10 0.47 0.57 3.63 2.16 3.62 2.02
20�20 0.46 0.50 3.54 1.87 3.53 1.77
50�50 0.47 0.52 3.60 2.13 3.58 2.95
100�100 0.53 0.52 4.09 3.76 3.75 3.76

Table 1

Execution time in seconds, assuming three di�erent workloads.

For (1), we did not expect our protocol to perform better than the static version, but hoped
it would give competitive results. The experiments con�rmed our hope, except for the smallest
tile sizes (which entail the most extra overhead since there are more rows of tiles). Surprisingly,
for the largest tile size, dynamic load balancing performed better, despite its extra overhead! It
turns out that for all tile sizes, both processor 1 and 8 end up with more than one eighth of the
work, compensating for the fact that they need to spend less time communicating (since each has
only one neighbor). Our technique provides a method of overcoming the non-linear pipeline delays
introduced by early-completing processors observed by [2].

For (2), load balancing signi�cantly improved performance. On average, each processor 13:5%
of its time waiting for communication. This compares with a 44:3% waiting time for the static
protocol. The Left-Right Hando� Protocol performed best for tile sizes between 10 and 50. Smaller
tiles had more overhead, and larger tiles result in slower convergence, since a larger fraction of the
computation is in the (wider) initial rows. Also note that for processor P to hand o� work to its
left neighbor, processor P-1, the amount of work transferred is limited to the work �nished by P
when it receives the checkpoint message from P-1. Thus, if there is a large imbalance, it may take
several rounds to achieve the right balance.

For (3), our protocol also performed best for tile sizes between 10 and 40. Convergence occurred
more swiftly than in case (2) because a hando�s from a processor to its right neighbor are not limited
as in the previous case.

In summary, these preliminary experiments show the Left-Right Hando� Protocol was successful
in achieving load balance for uneven or unpredicted loads, while incurring only a modest overhead.

Acknowledgement: We gratefully acknowledge the guidance of Professor Fran Berman in her
CSE 260 class.

References

[1] B. S. Siegell and P. Steenkiste, Automatic generation of parallel programs with dynamic load balancing,

IEEE Symp. on High Performance Dist. Computing (Aug. 1994).

[2] R. F. Van der Wijngaart, S. R.. Sarukkai, and P. Mehra, The E�ect of Interrupts on Software

Pipeline Execution on Message-passing Architectures, International Conference on Supercomputing

(May, 1996).

[3] M. J. Wolfe, High Performance Compilers for Parallel Computing. Addison-Wesley (1996).

[4] C.-Z. Xu and F. C.M. Lau, Iterative dynamic load balancing in multicomputers. J. of Operational

Research Society, 45(7):786{796 (1994).

[5] C.-Z. Xu and F. C.M. Lau, Load Balancing in Parallel Computers. Kluwer, 1997.


